

Search for WW/WZ Resonant Production at DØ

James Kraus
University of Mississippi
For the DØ Collaboration

Motivation

- The standard model (SM) is widely believed to be a low-energy effective theory of physics
 - New physics expected at TeV scale
- New, heavy particles may decay to WW or WZ
 - See as resonances in SM diboson spectrum
- Look combine 3 different final states
 - WZ \rightarrow lvll in 4.1 fb⁻¹
 - WW/WZ→lvjj in 5.4 fb⁻¹
 - WZ→lljj in 5.4 fb⁻¹

BSM Models

- We compare data to SM expectations and to Beyond the SM (BSM) theories
- The sequential SM (SSM) with a W'→WZ
 - Assumes additional SU(2) group having
 heavy resonances with SM-like couplings

- In RS Models, a warped extra-dimension exists that the graviton propagates through
- Massive Kaluza-Klein Modes of the graviton may exist at the ~TeV scale, observable at DØ

- pp collisions
 - $-\sqrt{s} = 1.96 \text{ TeV}$
 - 1 bunch crossing per 396 ns

Signal and Background Modeling

- Principal backgrounds Z+jets, W+jets, tt, single top, SM dibosons and multijet events
 - Z+jets, W+jets, tt modeled using ALPGEN
 - Single top modeled with COMPHEP
 - SM diboson production modeled using PYTHIA
 - Multijets estimated using data
- Both SSM W' and RS graviton modeled w/ PYTHIA
 - No interference between W and W'
- James Kraus University of Mississippi
- Signal normalized to NNLO

Muon Chambers

Calorimeter

Shielding

Lepton ID

• Electrons reconstructed in Central and Endcap

Calorimeters (CC and EC)

- > 95% in EM calorimeter
- Calorimeter and Track
 Isolation
- Multivariate discriminant to reject jets
- Consistent with track from Primary Vertex
- Muons reconstructed by matching track in muon chambers to track in inner tracker

Calorimeter and Track Isolation

Jet ID and MET

- Jets reconstructed in CC and EC using iterative midpoint cone algorithm
 - Reject jets matched to electrons
 - Cone width $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)} = 0.5$
- Missing Transverse Energy (MET) found by taking vector sum of all calorimeter cell energies
 - Corrections for muon momentum, Jet and electron energy scales

WZ → Ivll Selection Criteria

- The leptons must have $p_T > 20 \text{ GeV}$
- MET > 30 GeV
- Dilepton mass consistent with Z

- $-80 (70) \text{ GeV} < M_{ee(\mu\mu)} < 102 (110) \text{ GeV}$
- Expect W, Z boosted, so require
 - $\Delta R > 1.2$ between W lepton and Z daughters

WW/WZ → lvjj Selection Criteria

- Exactly one e or μ
- The lepton must have $p_T > 20 \text{ GeV}$
- MET > 20 GeV

- Single jet with jet mass = $\sqrt{(E_i^2 - p_i^2)} > 70 \text{ GeV}$

WZ → Iljj Selection Criteria

- Either ee or μμ pair
- The leptons must have $p_T > 20 \text{ GeV}$
- MET < 50 GeV
- $70 \text{ GeV} < M_{11} < 110 \text{ GeV}$

- $\Delta R(l,l) < 1.5$ and dilepton $p_T > 100 \text{ GeV}$
- Either
 - Dijets with 60 GeV <M $_{jj}$ <105 GeV and Δ R<1.5

James Kraus University of Mississippi

- Single jet with jet mass = $\sqrt{(E_i^2 - p_i^2)} > 60 \text{ GeV}$

High/Low Mass Regions

- Divide W'/G samples for limit setting into low mass
 (≤ 450 GeV) and high mass (>450 GeV) regions
 - Low mass limits include all events passing cuts
 - High mass limit requires, for lvjj and lljj
 - $\Delta \phi(l, MET) < 1.0$ and p_T of l+MET system > 150 GeV
 - $\Delta R(1,1) < 1.0$ and dilepton $p_T > 150 \text{ GeV}$

High Mass Event Sample Composition

Single lepton sample	Dilepton sample
3.6 ± 0.2	7.9 ± 0.8
124.5 ± 20.3	< 0.01
22.9 ± 2.5	< 0.01
4.6 ± 0.3	< 0.01
27.6 ± 1.4	0.8 ± 0.1
183.2 ± 24.5	8.7 ± 0.8
174	8
	3.6 ± 0.2 124.5 ± 20.3 22.9 ± 2.5 4.6 ± 0.3 27.6 ± 1.4 183.2 ± 24.5

Limits Setting

- Limits set using semifrequentist method
- Log-Likelihood Ratio (LLR)
 based on Poisson statistics
 - Diboson mass distribution
 - Integrate over LLR in pseudoexperiments to set confidence limits for background (CL_b) and signal+background (CL_{s+b})
- 95% C.L. exclusion limit set where $CL_{s+b}/CL_b = 0.05$

University of Mississippi

W' Limit Setting

- 180 GeV<M(W')<690 GeV
 - Assume linear relation between resonance mass and total W' width and that the intrinsic width is less than experimental resolution
 - Valid for W'WZ coupling strengths up to 10 times the SSM value

Graviton Limit Setting

- Limits on WW resonance also use 50 GeV binning
- For RS graviton, assume $k/M_{Pl} = 0.1/\sqrt{(8\pi)}$, where k is the curvature scale of the warped extra dimension and M_{Pl} is the Planck mass.
- At 95% C.L, we exclude

300 GeV < M(G) < 754 GeV

Summary

Have set limits on WW and WZ resonances with 4.1-5.4 fb⁻¹ of integrated luminosity at DØ

180 GeV<M(W')<690 GeV 300 GeV<M(G)<754 GeV

 More detail found at Phys. Rev. Lett. 107, 011801 (2011) arXiv:1011.6278

James Kraus University of Mississippi

